Inversion ModuleContent License: Creative Commons Attribution 4.0 International (CC-BY-4.0)Credit must be given to the creatorDownloadsEquation IndexAuthorsAffiliationsDouglas OldenburgUniversity of British Columbia Lindsey HeagyUniversity of British Columbia April 20, 2021s=1vs=\frac{1}{v}s=v1(1)ρ=1/σ\rho = 1/\sigmaρ=1/σ(2)μ=μ0(1+κ)\mu = \mu_0 (1 + \kappa)μ=μ0(1+κ)(3)F[m]=d\mathcal{F}[m] = dF[m]=d(4)dj=Fj[m]d_j=\mathcal{F}_j[m]dj=Fj[m](5)F[αf+βg]=αF[f]+βF[g]\mathcal{F}[\alpha f+\beta g]=\alpha\mathcal{F}[f]+\beta\mathcal{F}[g]F[αf+βg]=αF[f]+βF[g](6)dj=∫abgj(x)m(x)dxd_j=\int^b_ag_j(x)m(x)dxdj=∫abgj(x)m(x)dx(7)y=m⊗wy = m \otimes wy=m⊗w(8)y(tj)=∫−∞∞m(τ)w(tj−τ)dτy(t_j)=\int^{\infty}_{-\infty}m(\tau)w(t_j-\tau)d\tauy(tj)=∫−∞∞m(τ)w(tj−τ)dτ(9)B⃗(r⃗j)=μ04π∫J⃗(r⃗′)×r^∣r⃗j−r⃗′∣2\vec{B}(\vec{r}_j)=\frac{\mu_0}{4\pi}\int\frac{\vec{J}(\vec{r}\prime)\times\hat{r}}{\left|\vec{r}_j-\vec{r}\prime\right|^2}B(rj)=4πμ0∫∣rj−r′∣2J(r′)×r^(10)dj(1)=∫abgj(x)m1(x)dxd_j^{(1)}=\int^b_a g_j(x)m_1(x)dxdj(1)=∫abgj(x)m1(x)dx(11)dj(2)=∫abgj(x)m2(x)dxd_j^{(2)}=\int^b_a g_j(x)m_2(x)dxdj(2)=∫abgj(x)m2(x)dx(12)dj=∫abgj(x)[αm1(x)+βm2(x)]dj=αdj(1)+βdj(2)\begin{aligned}d_j=\int^b_a g_j(x)[\alpha & m_1(x) +\beta m_2(x)]\\ d_j=\alpha &d_j^{(1)}+\beta d_j^{(2)}\end{aligned}dj=∫abgj(x)[αdj=αm1(x)+βm2(x)]dj(1)+βdj(2)(13)dj=∫abgj(x)m2(x)dxd_j=\int^b_ag_j(x)m^2(x)dxdj=∫abgj(x)m2(x)dx(14)∇⋅σ∇V=−Iδ(r⃗−r⃗′)\nabla\cdot\sigma\nabla V=-I\delta(\vec{r}-\vec{r}\prime)∇⋅σ∇V=−Iδ(r−r′)(15)Vrms2(tj)=1tj∫0tmaxvint2(u)H(tj−u)duV^2_{rms}(t_j)=\frac{1}{t_j}\int^{t_{max}}_0 v^2_{int}(u)H(t_j-u)duVrms2(tj)=tj1∫0tmaxvint2(u)H(tj−u)du(16)Vrms2(t)=1t∫0tmaxvint2(u)H(t−u)duV^2_{rms}(t)=\frac{1}{t}\int^{t_{max}}_0 v_{int}^2(u)H(t-u)duVrms2(t)=t1∫0tmaxvint2(u)H(t−u)du(17)vint=Vrms(t)(1+2tVrms′(t)Vrms(t))12v_{int}=V_{rms}(t)\left(1+\frac{2tV'_{rms}(t)}{V_{rms}(t)}\right)^{\frac{1}{2}}vint=Vrms(t)(1+Vrms(t)2tVrms′(t))21(18)Vrms(t)=v0+asin(2πft)V_{rms}(t)=v_0+a\sin(2\pi ft)Vrms(t)=v0+asin(2πft)(19)Vrms′(t)=2πafcos(2πft)V'_{rms}(t)=2\pi af\cos(2\pi ft)Vrms′(t)=2πafcos(2πft)(20)dobs=dtrue+δdd^{obs}=d^{true}+\delta ddobs=dtrue+δd(21)F−1[dtrue]=mc\mathcal{F}^{-1}[d^{true}]=m_cF−1[dtrue]=mc(22)F−1[dobs]=F−1[dtrue+δd]=mc+δm\mathcal{F}^{-1}[d^{obs}]=\mathcal{F}^{-1}[d^{true}+\delta d]=m_c+\delta mF−1[dobs]=F−1[dtrue+δd]=mc+δm(23)δvint∝ftav0\delta v_{int}\propto \sqrt{\frac{fta}{v_0}}δvint∝v0fta(24)P(m∣dobs)∝P(dobs∣m)P(m)P(m|d^{obs})\propto P(d^{obs}|m)P(m)P(m∣dobs)∝P(dobs∣m)P(m)(25)Minimize ϕ=ϕd+βϕmsubject to ml<m<mu,\begin{aligned}&\text{Minimize}~~\phi=\phi_d+\beta\phi_m\\ &\text{subject to}~~m_l<m<m_u,\end{aligned}Minimize ϕ=ϕd+βϕmsubject to ml<m<mu,(26)gj(x)=epjxcos(2πqjx)g_j(x)= e^{p_jx}\cos(2\pi q_jx)gj(x)=epjxcos(2πqjx)(27)dj=∫0x1gj(x)m1dx+∫x1x2gj(x)m2dx+…=∑i=1M(∫xk−1xkgj(x)dx)midj=gjm\begin{aligned} d_j&=\int_0^{x_1}g_j(x)m_1dx +\int_{x_1}^{x_2}g_j(x)m_2dx+\dots \\ &=\sum^M_{i=1}\left(\int_{x_{k-1}}^{x_k}g_j\left(x\right)dx\right)m_i\\ &\\ d_j &= \mathbf g_j \mathbf m\end{aligned}djdj=∫0x1gj(x)m1dx+∫x1x2gj(x)m2dx+…=i=1∑M(∫xk−1xkgj(x)dx)mi=gjm(28)d=Gm=[d1⋮dN]\begin{aligned} \mathbf{d} = \mathbf{G}\mathbf{m} = \begin{bmatrix} d_1\\ \vdots\\ d_{N} \end{bmatrix}\end{aligned}d=Gm=⎣⎡d1⋮dN⎦⎤(29)Gjk=∫xk−1xkgj(x)dxG_{jk} = \int_{x_{k-1}}^{x_k} g_j(x) dxGjk=∫xk−1xkgj(x)dx(30)dobs=d+n\mathbf{d}^{obs}=\mathbf{d}+\mathbf{n}dobs=d+n(31)ϵj=%∣dj∣+νj\epsilon_j = \%|d_j| + \nu_jϵj=%∣dj∣+νj(32)ϕd=∑j=1N(dj−djobsϵj)2\phi_d=\sum^N_{j=1}\left(\frac{d_j-d_j^{obs}}{\epsilon_j}\right)^2ϕd=j=1∑N(ϵjdj−djobs)2(33)ηj=dj−djobsϵj\eta_j = \frac {d_j - d_j^{obs}} {\epsilon_j}ηj=ϵjdj−djobs(34)E[χ2]=NE[\chi^2] = NE[χ2]=N(35)Var[χ2]=2NVar[\chi^2] = 2NVar[χ2]=2N(36)ϕd∗=N\phi_d^*=Nϕd∗=N(37)ϕm=∫(m−mref)2dx\phi_m=\int (m-m^{ref})^2 dxϕm=∫(m−mref)2dx(38)ϕm=∫(d(m−mref)dx)2dx\phi_m=\int \left(\frac{d(m-m^{ref})}{dx}\right)^2 dxϕm=∫(dxd(m−mref))2dx(39)ϕm=αs∫(m−mref)2dx+αx∫(d(m−mref)dx)2dx\phi_m=\alpha_s\int (m-m^{ref})^2 dx+\alpha_x\int (\frac{d(m-m^{ref})}{dx})^2 dxϕm=αs∫(m−mref)2dx+αx∫(dxd(m−mref))2dx(40)ϕm=∥m−mref∥2=∑i=1M(mi−miref)2\phi_m=\|\mathbf{m - m^{ref}}\|^2=\sum_{i=1}^M(m_i-m^{ref}_i)^2ϕm=∥m−mref∥2=i=1∑M(mi−miref)2(41)ϕm=∥dmdx∥2=∑i=1M−1(mi+1−mi)2\phi_m=\|\frac{d\mathbf{m}}{dx}\|^2=\sum_{i=1}^{M-1}(m_{i+1}-m_i)^2ϕm=∥dxdm∥2=i=1∑M−1(mi+1−mi)2(42)ϕ(m)=ϕd(m)+βϕm(m)\phi(m) = \phi_d(m)+\beta\phi_m(m)ϕ(m)=ϕd(m)+βϕm(m)(43)ϕ=T+βF\phi=T+\beta Fϕ=T+βF(44)gj(x)=epjxcos(2πqjx)Δx\mathbf{g}_j(\mathbf{x}) = e^{p_j\mathbf{x}} cos (2 \pi q_j \mathbf{x}) \Delta xgj(x)=epjxcos(2πqjx)Δx(45)G=[g1⋮gN]\begin{aligned} \mathbf{G} = \begin{bmatrix} \mathbf{g}_1\\ \vdots\\ \mathbf{g}_{N} \end{bmatrix} \end{aligned}G=⎣⎡g1⋮gN⎦⎤(46)NotebooksTime domain cyl forward